Mechanochromic polymer blends, i.e. polymer blends characterised by optical responsiveness to mechanical stimuli, have evoked major interest and experienced significant progress in recent years. Various examples are reported of chromogenic materials composed of a functional dye covalently linked to the polymer chains or physically dispersed in the continuous macromolecular matrix, the latter appears to be a more sustainable route for the industrial scale-up of these materials. This feature article examines the properties and performances of various mechanochromic materials prepared by using different thermoplastic polymers with non-covalently incorporated aggregachromic dyes. More specifically, the general mechanism underlying the optical phenomenon is introduced and the different approaches used to obtain chromogenic materials are presented and discussed considering both dye features and polymer characteristics. The combination of the properties of the blend components can often result in drastic differences in the material chromogenic responsiveness. The article concludes commenting and discussing the application of these kind of polymer devices as a new type of advanced materials and the perspective thereof. © 2011 The Royal Society of Chemistry

Mechanochromic polymer blends

PUCCI, ANDREA;RUGGERI, GIACOMO
2011-01-01

Abstract

Mechanochromic polymer blends, i.e. polymer blends characterised by optical responsiveness to mechanical stimuli, have evoked major interest and experienced significant progress in recent years. Various examples are reported of chromogenic materials composed of a functional dye covalently linked to the polymer chains or physically dispersed in the continuous macromolecular matrix, the latter appears to be a more sustainable route for the industrial scale-up of these materials. This feature article examines the properties and performances of various mechanochromic materials prepared by using different thermoplastic polymers with non-covalently incorporated aggregachromic dyes. More specifically, the general mechanism underlying the optical phenomenon is introduced and the different approaches used to obtain chromogenic materials are presented and discussed considering both dye features and polymer characteristics. The combination of the properties of the blend components can often result in drastic differences in the material chromogenic responsiveness. The article concludes commenting and discussing the application of these kind of polymer devices as a new type of advanced materials and the perspective thereof. © 2011 The Royal Society of Chemistry
2011
Pucci, Andrea; Ruggeri, Giacomo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/194425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 207
  • ???jsp.display-item.citation.isi??? 189
social impact