The loss of the neurotransmitter noradrenaline occurs constantly in Parkinson's disease. This is supposed to worsen disease progression, either by increasing the vulnerability of dopamine-containing neurons or by reducing the recovery once they are damaged. Novel data also show that the loss of noradrenergic innervation facilitates the onset of dyskinesia occurring in Parkinsonian patients during dopamine replacement therapy. In the first part of the manuscript we review the evidence showing the loss of the noradrenergic system as an early event in the natural history of Parkinsonism. This evidence is discussed in light of novel reports showing the deleterious effects produced by the noradrenergic deficit on the survival of nigral dopamine neurons. In particular, we analyze the biochemical and morphological changes produced in the nigrostriatal system by the loss of endogenous noradrenaline. In a dedicated paragraph we specifically evaluate the cross affinity between dopamine and noradrenaline systems. In fact, this is critical during dopamine/noradrenaline replacement therapy in Parkinson's disease. In the last part, we overview novel therapeutic approaches aimed at restoring the activation of noradrenaline receptors to reduce the dyskinesia occurring in the treatment of Parkinson's disease.

Noradrenaline in Parkinson's disease: from disease progression to current therapeutics

FORNAI, FRANCESCO;PELLEGRINI, ANTONIO;PAPARELLI, ANTONIO
2007

Abstract

The loss of the neurotransmitter noradrenaline occurs constantly in Parkinson's disease. This is supposed to worsen disease progression, either by increasing the vulnerability of dopamine-containing neurons or by reducing the recovery once they are damaged. Novel data also show that the loss of noradrenergic innervation facilitates the onset of dyskinesia occurring in Parkinsonian patients during dopamine replacement therapy. In the first part of the manuscript we review the evidence showing the loss of the noradrenergic system as an early event in the natural history of Parkinsonism. This evidence is discussed in light of novel reports showing the deleterious effects produced by the noradrenergic deficit on the survival of nigral dopamine neurons. In particular, we analyze the biochemical and morphological changes produced in the nigrostriatal system by the loss of endogenous noradrenaline. In a dedicated paragraph we specifically evaluate the cross affinity between dopamine and noradrenaline systems. In fact, this is critical during dopamine/noradrenaline replacement therapy in Parkinson's disease. In the last part, we overview novel therapeutic approaches aimed at restoring the activation of noradrenaline receptors to reduce the dyskinesia occurring in the treatment of Parkinson's disease.
Fornai, Francesco; BANDETTINI DI POGGIO, Ab; Pellegrini, Antonio; Ruggieri, S; Paparelli, Antonio
File in questo prodotto:
File Dimensione Formato  
Fornai et al. Curr Med Chem 2007.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/194540
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 73
social impact