This study aims at contributing to the soil slip susceptibility assessment in a typical basin of the southern Apuan Alps, Italy. On June 1996, this basin (Cardoso Torrent, 13 km2 large) was hit by an extremely heavy rainstorm (maximum intensity of about 160 mm/h), which caused many landslides (debris slide–debris flows) and valley bottom flows (hyperconcentrated flows), destruction and deaths. Detailed surveys provided the characterization of the main factors (geological, geomorphologic, hydrological, hydrogeological and geotechnical) which contributed in triggering landslides. In order to evaluate the soil slip susceptibility in this area, a physically based model was applied and a GIS analysis of digital elevation model was performed. This approach couples a mechanical model based on an infinite slope form of the Mohr–Coulomb failure criterion, and a steady-state hydrological one (a modified version of Shalstab, which considers the cohesion of the debris material potentially involved in landsliding). GIS techniques allowed evaluating the effects of topographic convergence and drainage area on slope failure. In this way, based on the infiltration rate, the triggering of the June 1996 landslides was simulated and the critical rainfall thresholds assessed at about 200–250 mm/24 h.

Soil slip susceptibility assessment using mechanical-hydrological approach and GIS techniques: an application in the Apuan Alps (Italy)

D'AMATO AVANZI, GIACOMO ALFREDO;GIANNECCHINI, ROBERTO;PUCCINELLI, ALBERTO
2009-01-01

Abstract

This study aims at contributing to the soil slip susceptibility assessment in a typical basin of the southern Apuan Alps, Italy. On June 1996, this basin (Cardoso Torrent, 13 km2 large) was hit by an extremely heavy rainstorm (maximum intensity of about 160 mm/h), which caused many landslides (debris slide–debris flows) and valley bottom flows (hyperconcentrated flows), destruction and deaths. Detailed surveys provided the characterization of the main factors (geological, geomorphologic, hydrological, hydrogeological and geotechnical) which contributed in triggering landslides. In order to evaluate the soil slip susceptibility in this area, a physically based model was applied and a GIS analysis of digital elevation model was performed. This approach couples a mechanical model based on an infinite slope form of the Mohr–Coulomb failure criterion, and a steady-state hydrological one (a modified version of Shalstab, which considers the cohesion of the debris material potentially involved in landsliding). GIS techniques allowed evaluating the effects of topographic convergence and drainage area on slope failure. In this way, based on the infiltration rate, the triggering of the June 1996 landslides was simulated and the critical rainfall thresholds assessed at about 200–250 mm/24 h.
2009
D'AMATO AVANZI, GIACOMO ALFREDO; Falaschi, F.; Giannecchini, Roberto; Puccinelli, Alberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/196238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact