Islet dysfunction is a primary cause of developing type 2 diabetes mellitus (T2DM). Events leading to islet failure are still poorly defined due to the complexity of the disease and scarcity of human T2DM islets. The aim of the present study was to identify cellular mechanisms involved in the T2DM pathophysiology by protein profiling islets obtained from T2DM individuals and age- and weight-matched controls using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry and surface enhanced laser desorption/ionization time-of-flight mass spectrometry. In T2DM islets, multiple differentially expressed proteins correlated with insulin secretion. When these T2DM islet proteins were analyzed for differential pathway activation, three of the five most activated pathways were pathways of cell arrest and apoptosis (p53, caspase, stress-activated), one represented immune-response (Fas), and the most activated pathway was connected with proliferation and regeneration (E2F). Among the inactivated pathways, three out of five were pathways of proliferation and regeneration (insulin, PRL, PDGF). The present study is the first to report differential activation of specific pathways during T2DM islet deterioration. The information about alterations in pathway signaling patterns may open new ways to develop strategies aimed at restoring islet cell function and survival.

Apoptotic, Regenerative, And Immune-Related Signaling in Human Islets from Type 2 Diabetes Individuals

BOGGI, UGO;MARCHETTI, PIERO;
2009-01-01

Abstract

Islet dysfunction is a primary cause of developing type 2 diabetes mellitus (T2DM). Events leading to islet failure are still poorly defined due to the complexity of the disease and scarcity of human T2DM islets. The aim of the present study was to identify cellular mechanisms involved in the T2DM pathophysiology by protein profiling islets obtained from T2DM individuals and age- and weight-matched controls using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry and surface enhanced laser desorption/ionization time-of-flight mass spectrometry. In T2DM islets, multiple differentially expressed proteins correlated with insulin secretion. When these T2DM islet proteins were analyzed for differential pathway activation, three of the five most activated pathways were pathways of cell arrest and apoptosis (p53, caspase, stress-activated), one represented immune-response (Fas), and the most activated pathway was connected with proliferation and regeneration (E2F). Among the inactivated pathways, three out of five were pathways of proliferation and regeneration (insulin, PRL, PDGF). The present study is the first to report differential activation of specific pathways during T2DM islet deterioration. The information about alterations in pathway signaling patterns may open new ways to develop strategies aimed at restoring islet cell function and survival.
2009
Nyblom, Hk; Bugliani, M; Fung, Ym; Boggi, Ugo; Zubarev, R; Marchetti, Piero; Bergsten, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/200798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact