One of the unfortunate sequelae of increased life expectancy is a growing number of age-related degenerative diseases, a prime example being osteoporosis. This form of metabolic bone disease and related co-morbidities consume tremendous resources and costs from a nation's health care system. Osteoporosis results from genetic, age-related, and hormone-dependent causes as well as a compendium of secondary pathophysiological states. The presence of osteoporosis as a comorbidity confers a significant negative prognostic element following orthopedic procedures. In vitro and in vivo studies of osteoporotic bone implicate microarchitectural bone rarefaction, microenvironmental and functional disturbance of osteoblast-osteoclast coupling, and abnormal tissue and signalling molecule repertoires, each having detrimental effects on the regenerative and osteointegration processes. This review explores the pathophysiology of bone remodeling from a macro- and micro- systems biology standpoint with a focus on cytokine interactions. Furthermore, therapeutic interventions exploiting vulnerable nodes in these physiological networks will be posited. One exciting development in this area is the use of novel biomaterials.

Bone remodeling, humoral networks and smart biomaterial technology for osteoporosis

CARPI, ANGELO;NICOLINI, ANDREA;
2010

Abstract

One of the unfortunate sequelae of increased life expectancy is a growing number of age-related degenerative diseases, a prime example being osteoporosis. This form of metabolic bone disease and related co-morbidities consume tremendous resources and costs from a nation's health care system. Osteoporosis results from genetic, age-related, and hormone-dependent causes as well as a compendium of secondary pathophysiological states. The presence of osteoporosis as a comorbidity confers a significant negative prognostic element following orthopedic procedures. In vitro and in vivo studies of osteoporotic bone implicate microarchitectural bone rarefaction, microenvironmental and functional disturbance of osteoblast-osteoclast coupling, and abnormal tissue and signalling molecule repertoires, each having detrimental effects on the regenerative and osteointegration processes. This review explores the pathophysiology of bone remodeling from a macro- and micro- systems biology standpoint with a focus on cytokine interactions. Furthermore, therapeutic interventions exploiting vulnerable nodes in these physiological networks will be posited. One exciting development in this area is the use of novel biomaterials.
Fini, M; Carpi, Angelo; Borsari, V; Tschon, M; Nicolini, Andrea; Sartori, M; Mechanick, J; Giardino, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/201175
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact