A new mathematical model, referred to as Enhancer and Competitive Allosteric Modulator (ECAM) model, developed with the aim of quantitatively describing the interaction of an allosteric modulator with both enhancer and competitive properties towards G-protein-coupled receptors is described here. Model simulations for equilibrium (displacement-like and saturation-like), and kinetic (association and dissociation) binding experiments were performed. The results showed the ability of the model to interpret a number of possible ligand-receptor binding behaviors. In particular, the binding properties of PD81723, an enhancer and competitive allosteric modulator for the adenosine A(1) receptor, were experimentally evaluated by radioligand binding assays and interpreted by the ECAM model. The results also offer a theoretical background enabling the design and optimization of compounds endowed with allosteric enhancer, competitive, agonist, antagonist, and inverse agonist properties.

Enhancer and Competitive Allosteric Modulation Model for G-protein Coupled Receptors

PIETRA, DANIELE;BORGHINI, ALICE;BRESCHI, MARIA CRISTINA;BIANUCCI, ANNA MARIA PAOLA
2010-01-01

Abstract

A new mathematical model, referred to as Enhancer and Competitive Allosteric Modulator (ECAM) model, developed with the aim of quantitatively describing the interaction of an allosteric modulator with both enhancer and competitive properties towards G-protein-coupled receptors is described here. Model simulations for equilibrium (displacement-like and saturation-like), and kinetic (association and dissociation) binding experiments were performed. The results showed the ability of the model to interpret a number of possible ligand-receptor binding behaviors. In particular, the binding properties of PD81723, an enhancer and competitive allosteric modulator for the adenosine A(1) receptor, were experimentally evaluated by radioligand binding assays and interpreted by the ECAM model. The results also offer a theoretical background enabling the design and optimization of compounds endowed with allosteric enhancer, competitive, agonist, antagonist, and inverse agonist properties.
2010
Pietra, Daniele; Borghini, Alice; Breschi, MARIA CRISTINA; Bianucci, ANNA MARIA PAOLA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/202367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact