The autopilot market for small and research UAVs offers several products, but most of them, although widely configurable or even open-source, do not constitute a practical and safe development system for custom guidance, navigation and control systems. The ICARO project aims at providing the small UAV community with a valid autopilot alternative. The ICARO autopilot exploits rapid control system prototyping techniques and immersive manned simulation with the possibility of testing the autopilot using the Hardware- In-the-Loop (HIL) approach. This paper describes the hardware-in-the-loop and man-in-the-loop simulator for the ICARO II platform together with the synchronization protocol we developed to keep simulator and autopilot synchronized. Experimental evidence of the effectiveness of the synchronization protocol is given.
Distributed Real-Time Hardware- and Man-in-the-loop Simulation for the ICARO II Unmanned Systems Autopilot
POLLINI, LORENZO;INNOCENTI, MARIO
2012-01-01
Abstract
The autopilot market for small and research UAVs offers several products, but most of them, although widely configurable or even open-source, do not constitute a practical and safe development system for custom guidance, navigation and control systems. The ICARO project aims at providing the small UAV community with a valid autopilot alternative. The ICARO autopilot exploits rapid control system prototyping techniques and immersive manned simulation with the possibility of testing the autopilot using the Hardware- In-the-Loop (HIL) approach. This paper describes the hardware-in-the-loop and man-in-the-loop simulator for the ICARO II platform together with the synchronization protocol we developed to keep simulator and autopilot synchronized. Experimental evidence of the effectiveness of the synchronization protocol is given.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.