The transesterification of poly(ethylene terephthalate) (PET) with a mixture of sebacic acid (S), 4,4'-diacetoxybiphenyl (B) and 4-acetoxybenzoic acid (H), carried out under conditions expectedly favoring the formation of a p(ET-SBH) random copolyester, produces biphasic materials with an isotropic matrix and a highly fibrous, liquid-crystalline dispersed phase. Spectroscopic, calorimetric, microscopic and diffractometric characterization of the fractions separated by solvent extraction has shown that the two phases consist of practically random copolyesters having different average composition. Interestingly, the degree of aromaticity of the matrix is even lower than that of PET, whereas that of the minor phase is appreciably higher than that calculated for the SBH copolyester that would be produced from the monomer mixture in the absence of FET. This unexpected result is interpreted on the basis of an enthalpy-driven progressive diffusion of aromatic-rich material toward the mesophase which segregates at an early stage of the polycondensation within the isotropic mixture of low molar mass oligomers initially produced by the PET acidolysis. Thus, an increasing differentiation, rather than an equilibration, of the composition of the two phases takes place. It is noteworthy that, despite the strong compositional difference, the two phases of these products show fairly good compatibility and interfacial adhesion.

Liquid-crystallization induced reactions. Microstructure and morphology of copolyesters synthesized by transesterification of PET with some LCP monomers

PACI, MASSIMO;MAGAGNINI, PIER LUIGI;
1998-01-01

Abstract

The transesterification of poly(ethylene terephthalate) (PET) with a mixture of sebacic acid (S), 4,4'-diacetoxybiphenyl (B) and 4-acetoxybenzoic acid (H), carried out under conditions expectedly favoring the formation of a p(ET-SBH) random copolyester, produces biphasic materials with an isotropic matrix and a highly fibrous, liquid-crystalline dispersed phase. Spectroscopic, calorimetric, microscopic and diffractometric characterization of the fractions separated by solvent extraction has shown that the two phases consist of practically random copolyesters having different average composition. Interestingly, the degree of aromaticity of the matrix is even lower than that of PET, whereas that of the minor phase is appreciably higher than that calculated for the SBH copolyester that would be produced from the monomer mixture in the absence of FET. This unexpected result is interpreted on the basis of an enthalpy-driven progressive diffusion of aromatic-rich material toward the mesophase which segregates at an early stage of the polycondensation within the isotropic mixture of low molar mass oligomers initially produced by the PET acidolysis. Thus, an increasing differentiation, rather than an equilibration, of the composition of the two phases takes place. It is noteworthy that, despite the strong compositional difference, the two phases of these products show fairly good compatibility and interfacial adhesion.
1998
Tonti, Ms; Masseti, M; Poli, G; Paci, Massimo; Magagnini, PIER LUIGI; Forte, C; Veracini, Ca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/205760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact