In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.
Fractional convolution quadrature based on Generalized Adams Methods
ACETO, LIDIAPrimo
;MAGHERINI, CECILIA;
2014-01-01
Abstract
In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2014_Calcolo.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione
547.77 kB
Formato
Adobe PDF
|
547.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AMN_Calcolo_R1.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
373.85 kB
Formato
Adobe PDF
|
373.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.