In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.

Fractional convolution quadrature based on Generalized Adams Methods

ACETO, LIDIA
Primo
;
MAGHERINI, CECILIA;
2014

Abstract

In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.
Aceto, Lidia; Magherini, Cecilia; Novati, P.
File in questo prodotto:
File Dimensione Formato  
2014_Calcolo.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 547.77 kB
Formato Adobe PDF
547.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AMN_Calcolo_R1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 373.85 kB
Formato Adobe PDF
373.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/208129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact