The entropy h(Tα) of α-continued fraction transformations is known to be locally monotone outside a closed, totally disconnected set $\mathcal{E}$ . We will exploit the explicit description of the fractal structure of $\mathcal{E}$ to investigate the self-similarities displayed by the graph of the function α map h(Tα). Finally, we completely characterize the plateaux occurring in this graph, and classify the local monotonic behaviour.

Tuning and plateaux for the entropy of α-continued fractions

CARMINATI, CARLO;
2013-01-01

Abstract

The entropy h(Tα) of α-continued fraction transformations is known to be locally monotone outside a closed, totally disconnected set $\mathcal{E}$ . We will exploit the explicit description of the fractal structure of $\mathcal{E}$ to investigate the self-similarities displayed by the graph of the function α map h(Tα). Finally, we completely characterize the plateaux occurring in this graph, and classify the local monotonic behaviour.
2013
Carminati, Carlo; Tiozzo, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/208731
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact