Naringenin (NAR), flavonoid abundant in the genus Citrus, has been reported to interact with the large-conductance calcium-activated potassium channels (BK). Since activators of BK channels expressed in cardiac mitochondria trigger protective effects in several models of myocardial ischemia/reperfusion (I/R), this work aimed to evaluate the potential cardioprotective effects of NAR and the involvement of mitochondrial BK channels. In an in vivo model of acute infarct in rats, NAR (100 mg/kg i.p.) significantly reduced the heart injury induced by I/R. This effect was antagonized by the selective BK-blocker paxilline (PAX). The cardioprotective dose of NAR did not cause significant effects on the blood pressure. In Largendorff-perfused rat hearts submitted to ischemia/reperfusion, NAR improved the post-ischemic functional parameters (left ventricle developed pressure and dP/dt) with lower extension of myocardial injury. On isolated rat cardiac mitochondria, NAR caused a concentration-dependent depolarization of mitochondrial membrane and caused a trans-membrane flow of thallium (potassium-mimetic cation). Both these effects were antagonized by selective blockers of BK channels. Furthermore, NAR half-reduced the calcium accumulation into the matrix of cardiac mitochondria exposed to high calcium concentrations. In conclusion, NAR exerts anti-ischemic effects through a "pharmacological preconditioning" that it is likely to be mediated, at least in part, by the activation of mitochondrial BK channels. (C) 2013 Published by Elsevier Inc.

The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury

TESTAI, LARA;MARTELLI, ALMA;MARINO, ALICE;D'Antongiovanni V;CIREGIA, FEDERICA;GIUSTI, LAURA;LUCACCHINI, ANTONIO;Chericoni S;BRESCHI, MARIA CRISTINA;CALDERONE, VINCENZO
2013

Abstract

Naringenin (NAR), flavonoid abundant in the genus Citrus, has been reported to interact with the large-conductance calcium-activated potassium channels (BK). Since activators of BK channels expressed in cardiac mitochondria trigger protective effects in several models of myocardial ischemia/reperfusion (I/R), this work aimed to evaluate the potential cardioprotective effects of NAR and the involvement of mitochondrial BK channels. In an in vivo model of acute infarct in rats, NAR (100 mg/kg i.p.) significantly reduced the heart injury induced by I/R. This effect was antagonized by the selective BK-blocker paxilline (PAX). The cardioprotective dose of NAR did not cause significant effects on the blood pressure. In Largendorff-perfused rat hearts submitted to ischemia/reperfusion, NAR improved the post-ischemic functional parameters (left ventricle developed pressure and dP/dt) with lower extension of myocardial injury. On isolated rat cardiac mitochondria, NAR caused a concentration-dependent depolarization of mitochondrial membrane and caused a trans-membrane flow of thallium (potassium-mimetic cation). Both these effects were antagonized by selective blockers of BK channels. Furthermore, NAR half-reduced the calcium accumulation into the matrix of cardiac mitochondria exposed to high calcium concentrations. In conclusion, NAR exerts anti-ischemic effects through a "pharmacological preconditioning" that it is likely to be mediated, at least in part, by the activation of mitochondrial BK channels. (C) 2013 Published by Elsevier Inc.
Testai, Lara; Martelli, Alma; Marino, Alice; D'Antongiovanni, V; Ciregia, Federica; Giusti, Laura; Lucacchini, Antonio; Chericoni, S; Breschi, MARIA CRISTINA; Calderone, Vincenzo
File in questo prodotto:
File Dimensione Formato  
Bp Testai et al 2013.pdf

solo utenti autorizzati

Descrizione: Articolo finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/208950
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
social impact