This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The proposed approach is based on the analysis of certain polynomial identities in two variables and leads to interesting new interpolatory bivariate subdivision schemes.

A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

GEMIGNANI, LUCA;
2013

Abstract

This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The proposed approach is based on the analysis of certain polynomial identities in two variables and leads to interesting new interpolatory bivariate subdivision schemes.
Conti, C; Gemignani, Luca; Romani, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/208991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact