We study the nature of the nonlinear Schrödinger equation ground states on the product spaces Rn x Mk , where Mk is a compact Riemannian manifold. We prove that for small L2 masses the ground states coincide with the corresponding Rn ground states. We also prove that above a critical mass the ground states have nontrivial Mk dependence. Finally, we address the Cauchy problem issue, which transforms the variational analysis into dynamical stability results.
Autori interni: | |
Autori: | S. Terracini; N. Tzvetkov; N. Visciglia |
Titolo: | The nonlinear Schrödinger equation ground states on product spaces |
Anno del prodotto: | 2014 |
Abstract: | We study the nature of the nonlinear Schrödinger equation ground states on the product spaces Rn x Mk , where Mk is a compact Riemannian manifold. We prove that for small L2 masses the ground states coincide with the corresponding Rn ground states. We also prove that above a critical mass the ground states have nontrivial Mk dependence. Finally, we address the Cauchy problem issue, which transforms the variational analysis into dynamical stability results. |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Visciglia_214351.pdf | Versione finale editoriale | ![]() | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.