In this paper we study the numerical error arising in space-time approximation of unsteady power-law non-Newtonian fluids. A semi-implicit time discretization scheme, coupled with space discretization made with conforming finite elements is analyzed. The main result, which improves previous suboptimal estimates as those in [A.~Prohl, and M.~Ruzicka, SIAM J. Numer. Anal., 39 (2001), pp.~214--249] is the optimal O(k+h) error-estimate valid in the wide range pin]3/2,2], where k is the time-step and h the mesh-size. Our results hold in three-dimensional domains (with periodic boundary conditions), are uniform with respect to the degeneracy parameter delta of the extra stress tensor, and a stability h-k-coupling depending on p is also needed.
Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids
BERSELLI, LUIGI CARLO;
2015-01-01
Abstract
In this paper we study the numerical error arising in space-time approximation of unsteady power-law non-Newtonian fluids. A semi-implicit time discretization scheme, coupled with space discretization made with conforming finite elements is analyzed. The main result, which improves previous suboptimal estimates as those in [A.~Prohl, and M.~Ruzicka, SIAM J. Numer. Anal., 39 (2001), pp.~214--249] is the optimal O(k+h) error-estimate valid in the wide range pin]3/2,2], where k is the time-step and h the mesh-size. Our results hold in three-dimensional domains (with periodic boundary conditions), are uniform with respect to the degeneracy parameter delta of the extra stress tensor, and a stability h-k-coupling depending on p is also needed.File | Dimensione | Formato | |
---|---|---|---|
IMA-J-Numer-Anal2015.pdf
non disponibili
Descrizione: versione editoriale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
282.77 kB
Formato
Adobe PDF
|
282.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Berselli_226126.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
253.23 kB
Formato
Adobe PDF
|
253.23 kB | Adobe PDF | Visualizza/Apri |
post-print.pdf
accesso aperto
Descrizione: versione corretta
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
191.17 kB
Formato
Adobe PDF
|
191.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.