In this paper we study the numerical error arising in space-time approximation of unsteady power-law non-Newtonian fluids. A semi-implicit time discretization scheme, coupled with space discretization made with conforming finite elements is analyzed. The main result, which improves previous suboptimal estimates as those in [A.~Prohl, and M.~Ruzicka, SIAM J. Numer. Anal., 39 (2001), pp.~214--249] is the optimal O(k+h) error-estimate valid in the wide range pin]3/2,2], where k is the time-step and h the mesh-size. Our results hold in three-dimensional domains (with periodic boundary conditions), are uniform with respect to the degeneracy parameter delta of the extra stress tensor, and a stability h-k-coupling depending on p is also needed.

Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids

BERSELLI, LUIGI CARLO;
2015

Abstract

In this paper we study the numerical error arising in space-time approximation of unsteady power-law non-Newtonian fluids. A semi-implicit time discretization scheme, coupled with space discretization made with conforming finite elements is analyzed. The main result, which improves previous suboptimal estimates as those in [A.~Prohl, and M.~Ruzicka, SIAM J. Numer. Anal., 39 (2001), pp.~214--249] is the optimal O(k+h) error-estimate valid in the wide range pin]3/2,2], where k is the time-step and h the mesh-size. Our results hold in three-dimensional domains (with periodic boundary conditions), are uniform with respect to the degeneracy parameter delta of the extra stress tensor, and a stability h-k-coupling depending on p is also needed.
Berselli, LUIGI CARLO; Diening, L.; Ruzicka, M.
File in questo prodotto:
File Dimensione Formato  
IMA-J-Numer-Anal2015.pdf

non disponibili

Descrizione: versione editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 282.77 kB
Formato Adobe PDF
282.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Berselli_226126.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 253.23 kB
Formato Adobe PDF
253.23 kB Adobe PDF Visualizza/Apri
post-print.pdf

accesso aperto

Descrizione: versione corretta
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 191.17 kB
Formato Adobe PDF
191.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/226126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact