We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carath ́eodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schr ̈odinger potential in suitable classes.

Some new problems in spectral optimization

BUTTAZZO, GIUSEPPE;Velichkov B.
2014

Abstract

We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carath ́eodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schr ̈odinger potential in suitable classes.
Buttazzo, Giuseppe; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
227540 preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 367.14 kB
Formato Adobe PDF
367.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/227540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact