We define a sequence {X(n)}, n greater-than-or-equal-to 0 of homotopy equivalent smooth simply connected 4-manifolds, not diffeomorphic to a connected sum M1 # M2 with b^2_+(M(i)) > 0, i = 1, 2, for n > 0, and nondiffeomorphic for n not-equal m . Each X(n) has the homotopy type of 7CP2 # 37CP2BAR. We deduce that for all but finitely many n the connected sum of X(n) with a homotopy sphere is not diffeomorphic to a connected sum of complex surfaces, complex surfaces with reversed orientations and a homotopy sphere.

On simply connected noncomplex 4-manifolds

LISCA, PAOLO
1993-01-01

Abstract

We define a sequence {X(n)}, n greater-than-or-equal-to 0 of homotopy equivalent smooth simply connected 4-manifolds, not diffeomorphic to a connected sum M1 # M2 with b^2_+(M(i)) > 0, i = 1, 2, for n > 0, and nondiffeomorphic for n not-equal m . Each X(n) has the homotopy type of 7CP2 # 37CP2BAR. We deduce that for all but finitely many n the connected sum of X(n) with a homotopy sphere is not diffeomorphic to a connected sum of complex surfaces, complex surfaces with reversed orientations and a homotopy sphere.
1993
Lisca, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/24806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact