This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.

Neural-Network-Based Scheme for Sensor Failure Detection, Identification, and Accomodation

INNOCENTI, MARIO;
1995-01-01

Abstract

This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.
1995
Napolitano, M; Innocenti, Mario; Casdorph, V; Naylor, S; Silvestri, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/25061
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 63
social impact