We prove that if G is a Delta_0 definable function on the natural numbers and F(n) is the product of the first n values of G, then F is also Delta_0 definable. Moreover, the inductive properties of F can be proved inside the theory IDelta_0.
DELTA-ZERO COMPLEXITY OF THE RELATION y = Pi_{i leq n} F(i)
BERARDUCCI, ALESSANDRO;
1995-01-01
Abstract
We prove that if G is a Delta_0 definable function on the natural numbers and F(n) is the product of the first n values of G, then F is also Delta_0 definable. Moreover, the inductive properties of F can be proved inside the theory IDelta_0.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.