Uniformly approachable (UA) functions are a common generalization of uniformly continuous functions an d perfect functions. We study UA-functions and UA-spaces i. e. those uniform spaces in which every real valued continuous function is UA. Such spaces properly include the UC-spaces (Atsuji spaces). We characterize the weakly-UA subspaces of the real line and give a new characterization of the UC spaces. We prove a topological result which implies, under the continuum hypothesis, the existence of a subset M of the the n-dimensional euclidean space R^n such that if two continuous functions f, g from R^n to R are are not constant on any open set and g(M) is a subset of f(M), then f=g.

Uniformly Approchable Functions and Spaces

BERARDUCCI, ALESSANDRO;
1993-01-01

Abstract

Uniformly approachable (UA) functions are a common generalization of uniformly continuous functions an d perfect functions. We study UA-functions and UA-spaces i. e. those uniform spaces in which every real valued continuous function is UA. Such spaces properly include the UC-spaces (Atsuji spaces). We characterize the weakly-UA subspaces of the real line and give a new characterization of the UC spaces. We prove a topological result which implies, under the continuum hypothesis, the existence of a subset M of the the n-dimensional euclidean space R^n such that if two continuous functions f, g from R^n to R are are not constant on any open set and g(M) is a subset of f(M), then f=g.
1993
Berarducci, Alessandro; Dikranjan, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/27458
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact