Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input–output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets.

Genetic interval neural networks for granular data regression

CIMINO, MARIO GIOVANNI COSIMO ANTONIO;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO;
2014

Abstract

Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input–output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets.
Cimino, MARIO GIOVANNI COSIMO ANTONIO; Lazzerini, Beatrice; Marcelloni, Francesco; Witold, Pedrycz
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/278740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 30
social impact