Microparticles are membrane vesicles shed by cells upon activation and apoptosis. Agonists capable of inducing microparticle generation include cytokines, bacterial products, P-selectin, histamine. Cigarette smoke extract has also been recognized as an agonist involved in microparticle generation with an apoptosis-dependent mechanism. We investigated the possibility that cigarette smoke extract induces the rapid generation of proinflammatory microparticles by human mononuclear cells with a calcium-dependent mechanism.Human mononuclear cells were exposed to cigarette smoke extract. [Ca(2+)]i mobilization was assessed with the fluorescent probe Fluo-4 NW. Microparticles were quantified with a prothrombinase assay and by flow cytometry. Normal human bronchial epithelial cells and A549 alveolar cells were incubated with cigarette smoke extract-induced microparticles and the generation of ICAM-1, IL-8, and MCP-1 was assessed by ELISA.Exposure to cigarette smoke extract induced a rapid increase in [Ca(2+)]i mobilization. Microparticle generation was also increased. EGTA, verapamil and the calmodulin inhibitor, W-7, inhibited microparticle generation. Incubation of lung epithelial cells with cigarette smoke extract-induced microparticles increased the expression of proinflammatory mediators.Exposure of mononuclear cells to cigarette smoke extract causes a rapid shedding of microparticles with a proinflammatory potential that might add to the mechanisms of disease from tobacco use.

Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca(2+) mobilization.

PETRINI, SILVIA;NERI, TOMMASO;PEDRINELLI, ROBERTO;PAGGIARO, PIER LUIGI;CELI, ALESSANDRO
2014-01-01

Abstract

Microparticles are membrane vesicles shed by cells upon activation and apoptosis. Agonists capable of inducing microparticle generation include cytokines, bacterial products, P-selectin, histamine. Cigarette smoke extract has also been recognized as an agonist involved in microparticle generation with an apoptosis-dependent mechanism. We investigated the possibility that cigarette smoke extract induces the rapid generation of proinflammatory microparticles by human mononuclear cells with a calcium-dependent mechanism.Human mononuclear cells were exposed to cigarette smoke extract. [Ca(2+)]i mobilization was assessed with the fluorescent probe Fluo-4 NW. Microparticles were quantified with a prothrombinase assay and by flow cytometry. Normal human bronchial epithelial cells and A549 alveolar cells were incubated with cigarette smoke extract-induced microparticles and the generation of ICAM-1, IL-8, and MCP-1 was assessed by ELISA.Exposure to cigarette smoke extract induced a rapid increase in [Ca(2+)]i mobilization. Microparticle generation was also increased. EGTA, verapamil and the calmodulin inhibitor, W-7, inhibited microparticle generation. Incubation of lung epithelial cells with cigarette smoke extract-induced microparticles increased the expression of proinflammatory mediators.Exposure of mononuclear cells to cigarette smoke extract causes a rapid shedding of microparticles with a proinflammatory potential that might add to the mechanisms of disease from tobacco use.
2014
Cordazzo, C; Petrini, Silvia; Neri, Tommaso; Lombardi, S; Carmazzi, Y; Pedrinelli, Roberto; Paggiaro, PIER LUIGI; Celi, Alessandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/387867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 61
social impact