A fast implicit QR algorithm for eigenvalue computation of low rank corrections of Hermitian matrices is adjusted to work with matrix pencils arising from zerofinding problems for polynomials expressed in Chebyshev-like bases. The modified QZ algorithm computes the generalized eigenvalues of certain N×N rank structured matrix pencils using O(N2) flops and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.

Implicit QR for rank-structured matrix pencils

P. Boito;GEMIGNANI, LUCA
2014-01-01

Abstract

A fast implicit QR algorithm for eigenvalue computation of low rank corrections of Hermitian matrices is adjusted to work with matrix pencils arising from zerofinding problems for polynomials expressed in Chebyshev-like bases. The modified QZ algorithm computes the generalized eigenvalues of certain N×N rank structured matrix pencils using O(N2) flops and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
2014
Boito, P.; Eidelman, Y.; Gemignani, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/451667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact