A fast implicit QR algorithm for eigenvalue computation of low rank corrections of unitary matrices is adjusted to work with matrix pencils arising from polynomial zerofinding problems . The modified QZ algorithm computes the generalized eigenvalues of certain NxN rank structured matrix pencils using O(N^2) ops and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
Implicit QR for Companion-like Pencils
Boito P.;GEMIGNANI, LUCA
2015-01-01
Abstract
A fast implicit QR algorithm for eigenvalue computation of low rank corrections of unitary matrices is adjusted to work with matrix pencils arising from polynomial zerofinding problems . The modified QZ algorithm computes the generalized eigenvalues of certain NxN rank structured matrix pencils using O(N^2) ops and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1401.5606v2.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
442.05 kB
Formato
Adobe PDF
|
442.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.