In the present paper we consider spectral optimization problems involving the Schr\"odinger operator $-\Delta +\mu$ on $R^d$, the prototype being the minimization of the $k$ the eigenvalue $\lambda_k(\mu)$. Here $\mu$ may be a capacitary measure with prescribed torsional rigidity (like in the Kohler-Jobin problem) or a classical nonnegative potential $V$ which satisfies the integral constraint $\int V^{-p}dx \le m$ with $0<p<1$. We prove the existence of global solutions in $R^d$ and that the optimal potentials or measures are equal to $+\infty$ outside a compact set.

Spectral optimization problems for potentials and measures

BUTTAZZO, GIUSEPPE;Velichkov B.
2014

Abstract

In the present paper we consider spectral optimization problems involving the Schr\"odinger operator $-\Delta +\mu$ on $R^d$, the prototype being the minimization of the $k$ the eigenvalue $\lambda_k(\mu)$. Here $\mu$ may be a capacitary measure with prescribed torsional rigidity (like in the Kohler-Jobin problem) or a classical nonnegative potential $V$ which satisfies the integral constraint $\int V^{-p}dx \le m$ with $0
Bucur, D.; Buttazzo, Giuseppe; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
reprint_SIMA.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 387.47 kB
Formato Adobe PDF
387.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/466883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact