Background: Some species of water frogs originated from hybridization between different species. Such hybrid populations have a particular reproduction system called hybridogenesis. In this paper we consider the two species Pelophylax ridibundus and Pelophylax lessonae, and their hybrids Pelophylax esculentus. P. lessonae and P. esculentus form stable complexes (L-E complexes) in which P. esculentus are hemiclonal. In L-E complexes all the transmitted genomes by P. esculentus carry deleterious mutations which are lethal in homozygosity. Results: We analyze, by means of an individual based computational model, L-E complexes. The results of simulations based on the model show that, by eliminating deleterious mutations, L-E complexes collapse. In addition, simulations show that particular female preferences can contribute to the diffusion of deleterious mutations among all P. esculentus frogs. Finally, simulations show how L-E complexes react to the introduction of translocated P. ridibundus. Conclusions: The conclusions are the following: (i) deleterious mutations (combined with sexual preferences) strongly contribute to the stability of L-E complexes; (ii) female sexual choice can contribute to the diffusion of deleterious mutations; and (iii) the introduction of P. ridibundus can destabilize L-E complexes.

The role of deleterious mutations in the stability of hybridogenetic water frog complexes

BOVE, PASQUALE;MILAZZO, PAOLO;BARBUTI, ROBERTO
2014

Abstract

Background: Some species of water frogs originated from hybridization between different species. Such hybrid populations have a particular reproduction system called hybridogenesis. In this paper we consider the two species Pelophylax ridibundus and Pelophylax lessonae, and their hybrids Pelophylax esculentus. P. lessonae and P. esculentus form stable complexes (L-E complexes) in which P. esculentus are hemiclonal. In L-E complexes all the transmitted genomes by P. esculentus carry deleterious mutations which are lethal in homozygosity. Results: We analyze, by means of an individual based computational model, L-E complexes. The results of simulations based on the model show that, by eliminating deleterious mutations, L-E complexes collapse. In addition, simulations show that particular female preferences can contribute to the diffusion of deleterious mutations among all P. esculentus frogs. Finally, simulations show how L-E complexes react to the introduction of translocated P. ridibundus. Conclusions: The conclusions are the following: (i) deleterious mutations (combined with sexual preferences) strongly contribute to the stability of L-E complexes; (ii) female sexual choice can contribute to the diffusion of deleterious mutations; and (iii) the introduction of P. ridibundus can destabilize L-E complexes.
Bove, Pasquale; Milazzo, Paolo; Barbuti, Roberto
File in questo prodotto:
File Dimensione Formato  
document.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/471269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact