We prove global existence of smooth solutions for a slightly supercritical dyadic model. We consider a generalized version of the dyadic model introduced by Katz-Pavlovic [KatPav2004] and add a viscosity term with critical exponent and a supercritical correction. This model catches for the dyadic a conjecture that for Navier-Stokes equations was formulated by Tao [Tao2009]

Global regularity for a logarithmically supercritical hyperdissipative dyadic equation

ROMITO, MARCO
2014

Abstract

We prove global existence of smooth solutions for a slightly supercritical dyadic model. We consider a generalized version of the dyadic model introduced by Katz-Pavlovic [KatPav2004] and add a viscosity term with critical exponent and a supercritical correction. This model catches for the dyadic a conjecture that for Navier-Stokes equations was formulated by Tao [Tao2009]
Barbato, D.; Morandin, F.; Romito, Marco
File in questo prodotto:
File Dimensione Formato  
2014DPDE_BarMorRom.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 257.36 kB
Formato Adobe PDF
257.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/500867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact