Distributed consensus in sensor networks has received great attention in the last few years. Most of the research activity has been devoted to study the sensor interactions that allow the convergence of distributed consensus algorithms toward a globally optimal decision. On the other hand, the problem of designing an appropriate radio interface enabling such interactions has received little attention in the literature. Motivated by the above consideration, in this work an ultrawideband sensor network is considered and a physical layer scheme is designed, which allows the active sensors to achieve consensus in a distributed manner without the need of any admission protocol. We focus on the class of the so-called quantized distributed consensus algorithms in which the local measurements or current states of each sensor belong to a finite set. Particular attention is devoted to address the practical implementation issues as well as to the development of a receiver architecture with the same performance of existing alternatives based on an all-digital implementation but with a much lower sampling frequency on the order of MHz instead of GHz.

Achieving Distributed Consensus in UWB Sensor Networks: A Low Sampling Rate Scheme with Quantized Measurements

SANGUINETTI, LUCA
2014-01-01

Abstract

Distributed consensus in sensor networks has received great attention in the last few years. Most of the research activity has been devoted to study the sensor interactions that allow the convergence of distributed consensus algorithms toward a globally optimal decision. On the other hand, the problem of designing an appropriate radio interface enabling such interactions has received little attention in the literature. Motivated by the above consideration, in this work an ultrawideband sensor network is considered and a physical layer scheme is designed, which allows the active sensors to achieve consensus in a distributed manner without the need of any admission protocol. We focus on the class of the so-called quantized distributed consensus algorithms in which the local measurements or current states of each sensor belong to a finite set. Particular attention is devoted to address the practical implementation issues as well as to the development of a receiver architecture with the same performance of existing alternatives based on an all-digital implementation but with a much lower sampling frequency on the order of MHz instead of GHz.
2014
Lorenzo, Taponecco; Sanguinetti, Luca
File in questo prodotto:
File Dimensione Formato  
hindawi.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 531.31 kB
Formato Adobe PDF
531.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/520068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact