Models of normal open induction are those normal discretely ordered rings whose nonnegative part satisfy Peano's axioms for open formulas in the language of ordered semirings. (Where normal means integrally closed in its fraction field.) In 1964 Shepherdson gave a recursive nonstandard model of open induction. His model is not normal and does not have any infinite prime elements. In this paper we present a recursive nonstandard model of normal open induction with an unbounded set of infinite prime elements.
A recursive nonstandard model of Normal Open Induction
BERARDUCCI, ALESSANDRO;
1996-01-01
Abstract
Models of normal open induction are those normal discretely ordered rings whose nonnegative part satisfy Peano's axioms for open formulas in the language of ordered semirings. (Where normal means integrally closed in its fraction field.) In 1964 Shepherdson gave a recursive nonstandard model of open induction. His model is not normal and does not have any infinite prime elements. In this paper we present a recursive nonstandard model of normal open induction with an unbounded set of infinite prime elements.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.