We consider the standard family of area-preserving twist maps of the annulus and the corresponding KAM curves. Addressing a question raised by Kolmogorov, we show that, instead of viewing these invariant curves as separate objects, each of which having its own Diophantine frequency, one can encode them in a single function of the frequency, which is naturally defined in a complex domain containing the real Diophantine frequencies and which is monogenic in the sense of Borel; this implies a remarkable property of quasianalyticity, a form of uniqueness of the monogenic continuation, although real frequencies constitute a natural boundary for the analytic continuation from the Weierstraß point of view because of the density of the resonances.
There is only one KAM curve
CARMINATI, CARLO;
2014-01-01
Abstract
We consider the standard family of area-preserving twist maps of the annulus and the corresponding KAM curves. Addressing a question raised by Kolmogorov, we show that, instead of viewing these invariant curves as separate objects, each of which having its own Diophantine frequency, one can encode them in a single function of the frequency, which is naturally defined in a complex domain containing the real Diophantine frequencies and which is monogenic in the sense of Borel; this implies a remarkable property of quasianalyticity, a form of uniqueness of the monogenic continuation, although real frequencies constitute a natural boundary for the analytic continuation from the Weierstraß point of view because of the density of the resonances.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.