The process of laminar mixing in a T-shaped micro-device is studied by direct numerical simulation for a model binary mixture, composed of two fluids having the same density and the same viscosity, yet presenting a strong fluidity of mixing effect, i.e. the viscosity of the mixture is a function of its composition. In all cases, the inlet streams remain separated up to a critical Reynolds number, corresponding to the transition from a vortex flow regime, with a double mirror symmetry, to an engulfment flow regime, with a point central symmetry. In the case of a positive fluidity of mixing, the onset of the engulfment regime is accompanied by a sharp increase of the degree of mixing, with the critical Re decreasing as the fluidity of mixing increases. On the contrary, when the fluid mixture has a larger viscosity than that of its pure components, a viscous layer forms at the confluence of the inlet flows, which tends to keep the two streams separated. Therefore, in this case, no sudden increase of the degree of mixing is observed at the onset of the engulfment regime.

Mixing of binary fluids with composition-dependent viscosity in a T-shaped micro-device

GALLETTI, CHIARA
;
BRUNAZZI, ELISABETTA;MAURI, ROBERTO
2015-01-01

Abstract

The process of laminar mixing in a T-shaped micro-device is studied by direct numerical simulation for a model binary mixture, composed of two fluids having the same density and the same viscosity, yet presenting a strong fluidity of mixing effect, i.e. the viscosity of the mixture is a function of its composition. In all cases, the inlet streams remain separated up to a critical Reynolds number, corresponding to the transition from a vortex flow regime, with a double mirror symmetry, to an engulfment flow regime, with a point central symmetry. In the case of a positive fluidity of mixing, the onset of the engulfment regime is accompanied by a sharp increase of the degree of mixing, with the critical Re decreasing as the fluidity of mixing increases. On the contrary, when the fluid mixture has a larger viscosity than that of its pure components, a viscous layer forms at the confluence of the inlet flows, which tends to keep the two streams separated. Therefore, in this case, no sudden increase of the degree of mixing is observed at the onset of the engulfment regime.
2015
Galletti, Chiara; Arcolini, Giacomo; Brunazzi, Elisabetta; Mauri, Roberto
File in questo prodotto:
File Dimensione Formato  
Gallettietal_Revised_CES.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
2015_Galletti_Mauri_ChemEngSci.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.25 MB
Formato Adobe PDF
6.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/638263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact