The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopic imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents an example of a transition from a stretched to a compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed some time ago by Duri and Cipelletti [Europhys. Lett. 76, 972 (2006)] we are able to build a master curve for the shape parameter, whose scaling factor allows us to quantify a “long-time displacement length.” This characteristic length is shown to converge, as the concentration is increased, to the “short-time localization length” determined by pseudo-Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system is then compared with that induced by means of a delicate mechanical perturbation applied to the interface.
Controlling the dynamics of a bidimensional gel above and below its percolation transition
PUCCI, ANDREA;RUGGERI, GIACOMO;
2014-01-01
Abstract
The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopic imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents an example of a transition from a stretched to a compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed some time ago by Duri and Cipelletti [Europhys. Lett. 76, 972 (2006)] we are able to build a master curve for the shape parameter, whose scaling factor allows us to quantify a “long-time displacement length.” This characteristic length is shown to converge, as the concentration is increased, to the “short-time localization length” determined by pseudo-Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system is then compared with that induced by means of a delicate mechanical perturbation applied to the interface.File | Dimensione | Formato | |
---|---|---|---|
PucciA_641870.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.