We consider the $N$-body problem with interaction potential $U_alpha=rac{1}{ert x_i-x_jert^alpha}$ for $alpha>1$. We assume that the particles have all the same mass and that $N$ is the order $ertmathcal{R}ert$ of the rotation group $mathcal{R}$ of one of the five Platonic polyhedra. We study motions that, up to a relabeling of the $N$ particles, are invariant under $mathcal{R}$. By variational techniques we prove the existence of periodic and chaotic motions.

Platonic polyhedra, periodic orbits and chaotic motions in the N-body problem with non-Newtonian forces

GRONCHI, GIOVANNI FEDERICO
2014-01-01

Abstract

We consider the $N$-body problem with interaction potential $U_alpha=rac{1}{ert x_i-x_jert^alpha}$ for $alpha>1$. We assume that the particles have all the same mass and that $N$ is the order $ertmathcal{R}ert$ of the rotation group $mathcal{R}$ of one of the five Platonic polyhedra. We study motions that, up to a relabeling of the $N$ particles, are invariant under $mathcal{R}$. By variational techniques we prove the existence of periodic and chaotic motions.
2014
Fusco, G.; Gronchi, GIOVANNI FEDERICO
File in questo prodotto:
File Dimensione Formato  
chaos_revised.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 781.32 kB
Formato Adobe PDF
781.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/649263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact