The definable fundamental group of a definable set in an o-minimal expansion of a field is computed. This is achieved by proving the relevant case of the o-minimal van Kampen theorem. This result is applied to show that if the geometrical realization of a simplicial complex over an o-minimal expansion of a field is a definable manifold of dimension not 4, then its geometrical realization over the reals is a topological manifold.

o-Minimal Fundamental Group, Homology and Manifolds

BERARDUCCI, ALESSANDRO;
2002-01-01

Abstract

The definable fundamental group of a definable set in an o-minimal expansion of a field is computed. This is achieved by proving the relevant case of the o-minimal van Kampen theorem. This result is applied to show that if the geometrical realization of a simplicial complex over an o-minimal expansion of a field is a definable manifold of dimension not 4, then its geometrical realization over the reals is a topological manifold.
2002
Berarducci, Alessandro; Otero, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/69873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact