We consider local minimizers for a class of 1-homogeneous integral functionals defined on BVloc(Omega), with Omega subset of R-2. Under general assumptions on the functional, we prove that the boundary of the subgraph of such minimizers is (locally) a lipschitz graph in a suitable direction. The proof of this statement relies on a regularity result holding for boundaries in R-2 which minimize an anisotropic perimeter. This result is applied to the boundary of sublevel sets of a minimizer u is an element of BV_loc(Omega).
Autori interni: | |
Autori: | Novaga M; Paolini E |
Titolo: | Regularity results for some 1-homogeneous functionals |
Anno del prodotto: | 2002 |
Digital Object Identifier (DOI): | 10.1016/S1468-1218(01)00048-7 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.