We consider an abstract first order evolution equation in a Hilbert space in which the linear part is represented by a self-adjoint nonnegative operator A with discrete spectrum, and the nonlinear term has order greater than one at the origin. We investigate the asymptotic behavior of solutions. We prove that two different regimes coexist. Close to the kernel of A the dynamic is governed by the nonlinear term, and solutions (when they decay to 0) decay as negative powers of t. Close to the range of A, the nonlinear term is negligible, and solutions behave as solutions of the linearized problem. This means that they decay exponentially to 0, with a rate and an asymptotic profile given by a simple mode, namely a one-frequency solution of the linearized equation. The abstract results apply to semilinear parabolic equations.

A description of all possible decay rates for solutions of some semilinear parabolic equations

GHISI, MARINA;GOBBINO, MASSIMO;
2015

Abstract

We consider an abstract first order evolution equation in a Hilbert space in which the linear part is represented by a self-adjoint nonnegative operator A with discrete spectrum, and the nonlinear term has order greater than one at the origin. We investigate the asymptotic behavior of solutions. We prove that two different regimes coexist. Close to the kernel of A the dynamic is governed by the nonlinear term, and solutions (when they decay to 0) decay as negative powers of t. Close to the range of A, the nonlinear term is negligible, and solutions behave as solutions of the linearized problem. This means that they decay exponentially to 0, with a rate and an asymptotic profile given by a simple mode, namely a one-frequency solution of the linearized equation. The abstract results apply to semilinear parabolic equations.
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain
File in questo prodotto:
File Dimensione Formato  
JMPAGGH.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 442.39 kB
Formato Adobe PDF
442.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/750128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact