This work deals with the design and characterization of a new series of liquid crystalline elastomers in the form of monodomain films, showing self-assembling behaviour, namely the nematic and the orthogonal smectic A phases. The procedure for the design and preparation of monodomain and polydomain polysiloxane-based side-chain liquid crystalline elastomers containing different concentrations of two mesogenic monomers and a constant density (about 15 mol%) of the crosslinker is reported. The phase diagram and mesomorphic behaviour of the new resulting liquid crystalline elastomers were determined by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and especially X-ray diffraction studies, which helped to clearly identify the smectic A phase. Among new liquid crystalline elastomer films, a specific concentration of co-mesogens gives an unconventional and fascinating system with a direct transition from the isotropic to smectic A phase. Results of the thermo-mechanic studies confirmed the shape-memory properties of these films, which have elastic properties optimal for applications as thermo-mechanic actuators.

Effect of co-monomers' relative concentration on self-assembling behaviour of side-chain liquid crystalline elastomers

DOMENICI, VALENTINA;
2014-01-01

Abstract

This work deals with the design and characterization of a new series of liquid crystalline elastomers in the form of monodomain films, showing self-assembling behaviour, namely the nematic and the orthogonal smectic A phases. The procedure for the design and preparation of monodomain and polydomain polysiloxane-based side-chain liquid crystalline elastomers containing different concentrations of two mesogenic monomers and a constant density (about 15 mol%) of the crosslinker is reported. The phase diagram and mesomorphic behaviour of the new resulting liquid crystalline elastomers were determined by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and especially X-ray diffraction studies, which helped to clearly identify the smectic A phase. Among new liquid crystalline elastomer films, a specific concentration of co-mesogens gives an unconventional and fascinating system with a direct transition from the isotropic to smectic A phase. Results of the thermo-mechanic studies confirmed the shape-memory properties of these films, which have elastic properties optimal for applications as thermo-mechanic actuators.
2014
Domenici, Valentina; Milavec, J; Bubnov, A.; Pociecha, D.; Zupančič, B.; Rešetič, A.; Hamplová, V.; Gorecka, E.; Zalar, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/750457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact