We fabricate and characterize a microscale silicon opto-electro-mechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental omega(m)/2 pi - 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.
Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity
Pitanti, Alessandro;TREDICUCCI, ALESSANDRO;
2015-01-01
Abstract
We fabricate and characterize a microscale silicon opto-electro-mechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental omega(m)/2 pi - 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.File | Dimensione | Formato | |
---|---|---|---|
oe-23-3-3196.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.