n this article, conductive hollow fibers have been fabricated using melt spinning technique. Multiwalled carbon nanotubes (MWNTs) and poly(3-hexylthiophene-2,5-diyl) (P3HT) have been used to fabricate conductive poly-caprolactone (PCL) composites. The hollow fibers have inner and outer diameter in the range of 300 µm and 500 µm, respectively. Critical parameters to tune the dimension of hollow fibers have been defined following two-dimensions mathematical model. Evaluation of the mechanical properties showed that the incorporation of 1-3 wt % MWNTs and 5-8 wt % P3HT increased Young Modulus of 10% and 20% respectively, compared with pure PCL. The electrical property assessment demonstrated that a minimum incorporation of 3 wt % MWNT and 8 wt % P3HT in PCL matrix transformed composite materials into conductive materials. In addition, SH-SY5Y human neuroblastoma cells were seeded on the fabricated samples an their adhesion, proliferation and neurite length growth were analysed. In particular we observed that these materials promoted cell activities and in particular on MWNT/PCL composites there was a significant increase of neurite growth.
Realisation and characterization of conductive hollow fibers for neuronal tissue engineering
GATTAZZO, FRANCESCA;DE MARIA, CARMELO;AHLUWALIA, ARTI DEVI;VOZZI, GIOVANNI
2015-01-01
Abstract
n this article, conductive hollow fibers have been fabricated using melt spinning technique. Multiwalled carbon nanotubes (MWNTs) and poly(3-hexylthiophene-2,5-diyl) (P3HT) have been used to fabricate conductive poly-caprolactone (PCL) composites. The hollow fibers have inner and outer diameter in the range of 300 µm and 500 µm, respectively. Critical parameters to tune the dimension of hollow fibers have been defined following two-dimensions mathematical model. Evaluation of the mechanical properties showed that the incorporation of 1-3 wt % MWNTs and 5-8 wt % P3HT increased Young Modulus of 10% and 20% respectively, compared with pure PCL. The electrical property assessment demonstrated that a minimum incorporation of 3 wt % MWNT and 8 wt % P3HT in PCL matrix transformed composite materials into conductive materials. In addition, SH-SY5Y human neuroblastoma cells were seeded on the fabricated samples an their adhesion, proliferation and neurite length growth were analysed. In particular we observed that these materials promoted cell activities and in particular on MWNT/PCL composites there was a significant increase of neurite growth.File | Dimensione | Formato | |
---|---|---|---|
Proof.pdf
solo utenti autorizzati
Descrizione: Uncorrected proof
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.