Due to their particular properties, the beams of the multi-MeV protons generated during the interaction of ultraintense (I>10(19) W/cm(2)) short pulses with thin solid targets are most suited for use as a particle probe in laser-plasma experiments. The recently developed proton imaging technique employs the beams in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in laser-plasma interaction experiments. In recent investigations carried out at the Rutherford Appleton Laboratory (RAL, UK), a wide range of laser-plasma interaction conditions of relevance for inertial confinement fusion (ICF)/fast ignition has been explored. Among the results obtained will be discussed: the electric field distribution in laser-produced long-scale plasmas of ICF interest; the measurement of highly transient electric fields related to the generation and dynamics of hot electron currents following ultra-intense laser irradiation of targets; the observation in underdense plasmas, after the propagation of ultra-intense laser pulses, of structures identified as the remnants of solitons produced in the wake of the pulse. (C) 2002 American Institute of Physics.
Electric field detection in laser-plasma interaction experiments via the proton imaging technique RID E-1400-2011
PEGORARO, FRANCESCO;
2002-01-01
Abstract
Due to their particular properties, the beams of the multi-MeV protons generated during the interaction of ultraintense (I>10(19) W/cm(2)) short pulses with thin solid targets are most suited for use as a particle probe in laser-plasma experiments. The recently developed proton imaging technique employs the beams in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in laser-plasma interaction experiments. In recent investigations carried out at the Rutherford Appleton Laboratory (RAL, UK), a wide range of laser-plasma interaction conditions of relevance for inertial confinement fusion (ICF)/fast ignition has been explored. Among the results obtained will be discussed: the electric field distribution in laser-produced long-scale plasmas of ICF interest; the measurement of highly transient electric fields related to the generation and dynamics of hot electron currents following ultra-intense laser irradiation of targets; the observation in underdense plasmas, after the propagation of ultra-intense laser pulses, of structures identified as the remnants of solitons produced in the wake of the pulse. (C) 2002 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.