Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy-type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, namely the derivation is surjective.
Surreal numbers, derivations and transseries
Berarducci Alessandro;
2018-01-01
Abstract
Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy-type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, namely the derivation is surjective.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Berarducci, Mantova - 2015 - Surreal numbers, derivations and transseries.pdf
accesso aperto
Descrizione: Preprint ArXive
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
569.19 kB
Formato
Adobe PDF
|
569.19 kB | Adobe PDF | Visualizza/Apri |
Berarducci, Mantova - 2018 - Surreal numbers, derivations and transseries.pdf
solo utenti autorizzati
Descrizione: File editoriale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
624.38 kB
Formato
Adobe PDF
|
624.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.