Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy-type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, namely the derivation is surjective.

Surreal numbers, derivations and transseries

Berarducci Alessandro;
2018-01-01

Abstract

Several authors have conjectured that Conway’s field of surreal numbers, equipped with the exponential function of Kruskal and Gonshor, can be described as a field of transseries and admits a compatible differential structure of Hardy-type. In this paper we give a complete positive solution to both problems. We also show that with this new differential structure, the surreal numbers are Liouville closed, namely the derivation is surjective.
2018
Berarducci, Alessandro; Mantova, Vincenzo
File in questo prodotto:
File Dimensione Formato  
Berarducci, Mantova - 2015 - Surreal numbers, derivations and transseries.pdf

accesso aperto

Descrizione: Preprint ArXive
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 569.19 kB
Formato Adobe PDF
569.19 kB Adobe PDF Visualizza/Apri
Berarducci, Mantova - 2018 - Surreal numbers, derivations and transseries.pdf

solo utenti autorizzati

Descrizione: File editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 624.38 kB
Formato Adobe PDF
624.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/760466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact