Dedicated imaging methods are among the most important tools of modern computer-aided medical applications. In the last few years, cone beam computed tomography (CBCT) has gained popularity in digital dentistry for 3D imaging of jawbones and teeth. However, the anatomy of a maxillofacial region complicates the assessment of tooth geometry and anatomical location when using standard orthogonal views of the CT data set. In particular, a tooth is defined by a sub-region, which cannot be easily separated from surrounding tissues by only considering pixel grey-intensity values. For this reason, an image enhancement is usually necessary in order to properly segment tooth geometries. In this paper, an anatomy-driven methodology to reconstruct individual 3D tooth anatomies by processing CBCT data is presented. The main concept is to generate a small set of multi-planar reformation images along significant views for each target tooth, driven by the individual anatomical geometry of a specific patient. The reformation images greatly enhance the clearness of the target tooth contours. A set of meaningful 2D tooth contours is extracted and used to automatically model the overall 3D tooth shape through a B-spline representation. The effectiveness of the methodology has been verified by comparing some anatomy-driven reconstructions of anterior and premolar teeth with those obtained by using standard tooth segmentation tools. Copyright © 2015 John Wiley & Sons, Ltd.

CT segmentation of dental shapes by anatomy-driven reformation imaging and B-spline modelling

BARONE, SANDRO;PAOLI, ALESSANDRO;RAZIONALE, ARMANDO VIVIANO
2016-01-01

Abstract

Dedicated imaging methods are among the most important tools of modern computer-aided medical applications. In the last few years, cone beam computed tomography (CBCT) has gained popularity in digital dentistry for 3D imaging of jawbones and teeth. However, the anatomy of a maxillofacial region complicates the assessment of tooth geometry and anatomical location when using standard orthogonal views of the CT data set. In particular, a tooth is defined by a sub-region, which cannot be easily separated from surrounding tissues by only considering pixel grey-intensity values. For this reason, an image enhancement is usually necessary in order to properly segment tooth geometries. In this paper, an anatomy-driven methodology to reconstruct individual 3D tooth anatomies by processing CBCT data is presented. The main concept is to generate a small set of multi-planar reformation images along significant views for each target tooth, driven by the individual anatomical geometry of a specific patient. The reformation images greatly enhance the clearness of the target tooth contours. A set of meaningful 2D tooth contours is extracted and used to automatically model the overall 3D tooth shape through a B-spline representation. The effectiveness of the methodology has been verified by comparing some anatomy-driven reconstructions of anterior and premolar teeth with those obtained by using standard tooth segmentation tools. Copyright © 2015 John Wiley & Sons, Ltd.
2016
Barone, Sandro; Paoli, Alessandro; Razionale, ARMANDO VIVIANO
File in questo prodotto:
File Dimensione Formato  
Post print version_Tooth segmentation by MIP images.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/762196
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 37
social impact