The genus Helichrysum Miller is a source of many bioactive metabolites commonly used in traditional medicine. In particular, Helichrysum petiolare Hilliard & B.L. Burtt shows activities as antiseptic, anti-inflammatory and in the control of anxiety disorder. Biosynthesis and accumulation of secondary metabolites is a defense mechanism of plants and it is strictly influenced by the surrounding environmental conditions. In this study, drought was imposed on H. petiolare (HEL008 clone CREA-Sanremo collection) to understand the effect of water stress on the dynamics of plant biomass and secondary metabolites production, and the morphological and physiological mechanisms involved in plant responses. H. petiolare was cultivated for 34 days under three water regimes: 100% of container capacity (CC, control), 50% CC (moderate water stress), and 0% CC (severe water stress). Plant growth traits, leaf water potential, gas exchange parameters, phenol, flavonoid, and anthocyanin content, and antioxidant activity changes were determined twice a week, while the volatile organic compounds (VOCs) and essential oils (Eos) at the end of the trial. Severe water stress dramatically reduced aerial and root dry weight, chlorophyll and carotenoid content, leaf water potential, water use efficiency (WUE, A/E), transpiration rate (E), stomatal conductance (gs), net photosynthetic rate (A) and antioxidant activity. Moderate water stress induced only slight changes and led to an increase of WUE at the end of the experiment. The total amount of VOCs and Eos was not affected by water stress while their quality changed. Moderate water stress increased the main constituents of both VOCs, i.e. the monoterpene hydrocarbons, and Eos, i.e., the oxygenated sesquiterpenes. In conclusion, this H. petiolare cultivation under the applied moderate drought condition could lead to a double benefit i.e., water-saving irrigation practice and high quality metabolite productio

Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & B.L. Burtt

D'ANGIOLILLO, FRANCESCA;PISTELLI, LUISA;PISTELLI, LAURA;
2016-01-01

Abstract

The genus Helichrysum Miller is a source of many bioactive metabolites commonly used in traditional medicine. In particular, Helichrysum petiolare Hilliard & B.L. Burtt shows activities as antiseptic, anti-inflammatory and in the control of anxiety disorder. Biosynthesis and accumulation of secondary metabolites is a defense mechanism of plants and it is strictly influenced by the surrounding environmental conditions. In this study, drought was imposed on H. petiolare (HEL008 clone CREA-Sanremo collection) to understand the effect of water stress on the dynamics of plant biomass and secondary metabolites production, and the morphological and physiological mechanisms involved in plant responses. H. petiolare was cultivated for 34 days under three water regimes: 100% of container capacity (CC, control), 50% CC (moderate water stress), and 0% CC (severe water stress). Plant growth traits, leaf water potential, gas exchange parameters, phenol, flavonoid, and anthocyanin content, and antioxidant activity changes were determined twice a week, while the volatile organic compounds (VOCs) and essential oils (Eos) at the end of the trial. Severe water stress dramatically reduced aerial and root dry weight, chlorophyll and carotenoid content, leaf water potential, water use efficiency (WUE, A/E), transpiration rate (E), stomatal conductance (gs), net photosynthetic rate (A) and antioxidant activity. Moderate water stress induced only slight changes and led to an increase of WUE at the end of the experiment. The total amount of VOCs and Eos was not affected by water stress while their quality changed. Moderate water stress increased the main constituents of both VOCs, i.e. the monoterpene hydrocarbons, and Eos, i.e., the oxygenated sesquiterpenes. In conclusion, this H. petiolare cultivation under the applied moderate drought condition could lead to a double benefit i.e., water-saving irrigation practice and high quality metabolite productio
2016
Caser, M; D'Angiolillo, Francesca; Chitarra, W; Lovisolo, C; Ruffoni, B; Pistelli, Luisa; Pistelli, Laura; Scariot, V.
File in questo prodotto:
File Dimensione Formato  
Caser et al._INDCROPPROD_2016.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Caser et al._manuscript_REV_LAURA.docx

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 194.99 kB
Formato Microsoft Word XML
194.99 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/765581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact