Goal: This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization. EDA can be considered as one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC). Methods: The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts. This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization, and sparsity. Results: The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation. Significance: Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, e.g., in the field of affective computing
cvxEDA: a Convex Optimization Approach to Electrodermal Activity Processing
GRECO, ALBERTO;VALENZA, GAETANO;LANATA', ANTONIO;SCILINGO, ENZO PASQUALE;
2016-01-01
Abstract
Goal: This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization. EDA can be considered as one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC). Methods: The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts. This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization, and sparsity. Results: The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation. Significance: Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, e.g., in the field of affective computingFile | Dimensione | Formato | |
---|---|---|---|
Scilingo_765995.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
317.82 kB
Formato
Adobe PDF
|
317.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.