Acoustic particle velocity sensors have been obtained applying simple low resolution micromachining steps to chips fabricated using a standard microelectronic process. Each sensor consists of four silicided polysilicon wires, suspended over cavities etched into the substrate, and connected to form a heatstone bridge. Full compatibility of the micromachining procedure with the original process is demonstrated by integrating a simple pre-amplifier on the same chip as the sensors and showing that both blocks are functional. Proper design of the sensing structures allows them to operate with a single 3.3 V power supply. Sensitivity and noise measurements, performed to estimate the sensor detection limit, are described. Excess noise with a flicker-like behavior, not ascribable to the amplifier, is found when the bridges are biased in working conditions. In addition, the dependence of the sensitivity on the dc bias voltage of the bridges is investigated, comparing the experimental data with the results of a simple analytical model and finite element method simulations.

Characterization and modeling of CMOS-compatible acoustical particle velocity sensors for applications requiring low supply voltages

PIOTTO, MASSIMO;DI PANCRAZIO, ALESSIA;IANNACCONE, GIUSEPPE;BRUSCHI, PAOLO
2015-01-01

Abstract

Acoustic particle velocity sensors have been obtained applying simple low resolution micromachining steps to chips fabricated using a standard microelectronic process. Each sensor consists of four silicided polysilicon wires, suspended over cavities etched into the substrate, and connected to form a heatstone bridge. Full compatibility of the micromachining procedure with the original process is demonstrated by integrating a simple pre-amplifier on the same chip as the sensors and showing that both blocks are functional. Proper design of the sensing structures allows them to operate with a single 3.3 V power supply. Sensitivity and noise measurements, performed to estimate the sensor detection limit, are described. Excess noise with a flicker-like behavior, not ascribable to the amplifier, is found when the bridges are biased in working conditions. In addition, the dependence of the sensitivity on the dc bias voltage of the bridges is investigated, comparing the experimental data with the results of a simple analytical model and finite element method simulations.
2015
Piotto, Massimo; Butti, Federico; Zanetti, E.; DI PANCRAZIO, Alessia; Iannaccone, Giuseppe; Bruschi, Paolo
File in questo prodotto:
File Dimensione Formato  
60_Acustici_Sensitivity.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
post_print.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/766527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact