The use of thermoluminescent dosimeters (TLDs) in heavy charged particles’ dosimetry is limited by their non-linear dose response curve and by their response dependence on the radiation quality. Thus, in order to use TLDs with particle beams, a model that can reproduce the behavior of these detectors under different conditions is needed. Here a new, simple and completely analytical algorithm for the calculation of the relative TL-efficiency depending on the ion charge Z and energy E is presented. The detector response is evaluated starting from the single ion case, where the computed effectiveness values have been compared with experimental data as well as with predictions from a different method. The main advantage of this approach is that, being fully analytical, it is computationally fast and can be efficiently integrated into treatment planning verification tools. The calculated efficiency values have been then implemented in the treatment planning code TRiP98 and dose calculations on a macroscopic target irradiated with an extended carbon ion field have been performed and verified against experimental data.

TLD efficiency calculations for heavy ions: an analytical approach

ROSSO, VALERIA;
2015-01-01

Abstract

The use of thermoluminescent dosimeters (TLDs) in heavy charged particles’ dosimetry is limited by their non-linear dose response curve and by their response dependence on the radiation quality. Thus, in order to use TLDs with particle beams, a model that can reproduce the behavior of these detectors under different conditions is needed. Here a new, simple and completely analytical algorithm for the calculation of the relative TL-efficiency depending on the ion charge Z and energy E is presented. The detector response is evaluated starting from the single ion case, where the computed effectiveness values have been compared with experimental data as well as with predictions from a different method. The main advantage of this approach is that, being fully analytical, it is computationally fast and can be efficiently integrated into treatment planning verification tools. The calculated efficiency values have been then implemented in the treatment planning code TRiP98 and dose calculations on a macroscopic target irradiated with an extended carbon ion field have been performed and verified against experimental data.
2015
Boscolo, D; Scifoni, E.; Carlino, A; La Tessa, C; Berger, T; Durante, M; Rosso, Valeria; Kramer, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/769641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact