We consider the cubic nonlinear Schrödinger equation posed on the spatial domain ℝ x Tᵈ. We prove modified scattering and construct modified wave operators for small initial and final data respectively (1 ≤ d ≤ 4). The key novelty comes from the fact that the modified asymptotic dynamics are dictated by the resonant system of this equation, which sustains interesting dynamics when d ≥ 2. As a consequence, we obtain global strong solutions (for d ≥ 2) with infinitely growing Sobolev norms Hˢ.

Modified scattering for the cubic Schrödinger equation on product spaces and applications

VISCIGLIA, NICOLA;
2015-01-01

Abstract

We consider the cubic nonlinear Schrödinger equation posed on the spatial domain ℝ x Tᵈ. We prove modified scattering and construct modified wave operators for small initial and final data respectively (1 ≤ d ≤ 4). The key novelty comes from the fact that the modified asymptotic dynamics are dictated by the resonant system of this equation, which sustains interesting dynamics when d ≥ 2. As a consequence, we obtain global strong solutions (for d ≥ 2) with infinitely growing Sobolev norms Hˢ.
2015
Pausader, Benoit; Tzvetkov, Nikolay; Visciglia, Nicola; Hani, Zaher
File in questo prodotto:
File Dimensione Formato  
Visciglia_770717.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 760.8 kB
Formato Adobe PDF
760.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/770717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 69
social impact