Before establishing a communication link in a cellular network, the user terminal must activate a synchronization procedure called initial cell search in order to acquire specific information about the serving base station. To accomplish this task, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) are periodically transmitted in the downlink of a long term evolution (LTE) network. Since SSS detection can be performed only after successful identification of the primary signal, in this work, we present a novel algorithm for joint PSS detection, sector index identification, and integer frequency offset (IFO) recovery in an LTE system. The proposed scheme relies on the maximum likelihood (ML) estimation criterion and exploits a suitable reduced-rank representation of the channel frequency response, which proves robust against multipath distortions and residual timing errors. We show that a number of PSS detection methods that were originally introduced through heuristic reasoning can be derived from our ML framework by simply selecting an appropriate model for the channel gains over the PSS subcarriers. Numerical simulations indicate that the proposed scheme can be effectively applied in the presence of severe multipath propagation, where existing alternatives provide unsatisfactory performance.
A Robust Maximum Likelihood Scheme for PSS Detection and Integer Frequency Offset Recovery in LTE Systems
MORETTI, MARCO;MORELLI, MICHELE
2016-01-01
Abstract
Before establishing a communication link in a cellular network, the user terminal must activate a synchronization procedure called initial cell search in order to acquire specific information about the serving base station. To accomplish this task, the primary synchronization signal (PSS) and secondary synchronization signal (SSS) are periodically transmitted in the downlink of a long term evolution (LTE) network. Since SSS detection can be performed only after successful identification of the primary signal, in this work, we present a novel algorithm for joint PSS detection, sector index identification, and integer frequency offset (IFO) recovery in an LTE system. The proposed scheme relies on the maximum likelihood (ML) estimation criterion and exploits a suitable reduced-rank representation of the channel frequency response, which proves robust against multipath distortions and residual timing errors. We show that a number of PSS detection methods that were originally introduced through heuristic reasoning can be derived from our ML framework by simply selecting an appropriate model for the channel gains over the PSS subcarriers. Numerical simulations indicate that the proposed scheme can be effectively applied in the presence of severe multipath propagation, where existing alternatives provide unsatisfactory performance.File | Dimensione | Formato | |
---|---|---|---|
manuscript.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
267.35 kB
Formato
Adobe PDF
|
267.35 kB | Adobe PDF | Visualizza/Apri |
printedVersion.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
599.75 kB
Formato
Adobe PDF
|
599.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.