We establish the existence of semiclassical states for a nonlinear Klein–Gordon–Maxwell–Proca system in static form, with Proca mass 1, on a closed Riemannian manifold. Our results include manifolds of arbitrary dimension and allow supercritical nonlinearities. In particular, we exhibit a large class of three-dimensional manifolds on which the system has semiclassical solutions for every exponent p>2. The solutions we obtain concentrate at closed submanifolds of positive dimension as the singular perturbation parameter goes to zero.

Semiclassical states for a static supercritical Klein–Gordon–Maxwell–Proca system on a closed Riemannian manifold

GHIMENTI, MARCO GIPO;MICHELETTI, ANNA MARIA
2016-01-01

Abstract

We establish the existence of semiclassical states for a nonlinear Klein–Gordon–Maxwell–Proca system in static form, with Proca mass 1, on a closed Riemannian manifold. Our results include manifolds of arbitrary dimension and allow supercritical nonlinearities. In particular, we exhibit a large class of three-dimensional manifolds on which the system has semiclassical solutions for every exponent p>2. The solutions we obtain concentrate at closed submanifolds of positive dimension as the singular perturbation parameter goes to zero.
2016
Clapp, Mónica; Ghimenti, MARCO GIPO; Micheletti, ANNA MARIA
File in questo prodotto:
File Dimensione Formato  
S021919971550039X.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 341.46 kB
Formato Adobe PDF
341.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ghimenti_787519.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 271.67 kB
Formato Adobe PDF
271.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/787519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact