We consider a second order linear equation with a time-dependent coefficient c(t) in front of the “elastic” operator. For these equations it is well-known that a higher space-regularity of initial data compensates a lower time-regularity of c(t). In this paper we investigate the influence of a strong dissipation, namely a friction term which depends on a power of the elastic operator. What we discover is a threshold effect. When the exponent of the elastic operator in the friction term is greater than 1/2, the damping prevails and the equation behaves as if the coefficient c(t) were constant. When the exponent is less than 1/2, the time- regularity of c(t) comes into play. If c(t) is regular enough, once again the damping prevails. On the contrary, when c(t) is not regular enough the damping might beineffective, and there are examples in which the dissipative equation behaves as the non-dissipative one. As expected, the stronger is the damping, the lower is the time-regularity threshold. We also provide counterexamples showing the optimality of our results.

### Linear wave equations with time-dependent propagation speed and strong damping

#### Abstract

We consider a second order linear equation with a time-dependent coefficient c(t) in front of the “elastic” operator. For these equations it is well-known that a higher space-regularity of initial data compensates a lower time-regularity of c(t). In this paper we investigate the influence of a strong dissipation, namely a friction term which depends on a power of the elastic operator. What we discover is a threshold effect. When the exponent of the elastic operator in the friction term is greater than 1/2, the damping prevails and the equation behaves as if the coefficient c(t) were constant. When the exponent is less than 1/2, the time- regularity of c(t) comes into play. If c(t) is regular enough, once again the damping prevails. On the contrary, when c(t) is not regular enough the damping might beineffective, and there are examples in which the dissipative equation behaves as the non-dissipative one. As expected, the stronger is the damping, the lower is the time-regularity threshold. We also provide counterexamples showing the optimality of our results.
##### Scheda breve Scheda completa Scheda completa (DC)
2016
Ghisi, Marina; Gobbino, Massimo
File in questo prodotto:
File
arxiv-JDE2016.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 497.78 kB
DGCS_StrongDiss.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 320.38 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11568/793098`
• ND
• 6
• 6