We consider the general Choquard equations-δu+u=(Iα*|u|p)|u|p-2u where Iα is a Riesz potential. We construct minimal action odd solutions for p∈(N+α/N,N+α/N-2) and minimal action nodal solutions for p∈(2,N+α/N-2). We introduce a new minimax principle for least action nodal solutions and we develop new concentration-compactness lemmas for sign-changing Palais-Smale sequences. The nonlinear Schrödinger equation, which is the nonlocal counterpart of the Choquard equation, does not have such solutions.

Nodal solutions for the Choquard equation

GHIMENTI, MARCO GIPO;
2016-01-01

Abstract

We consider the general Choquard equations-δu+u=(Iα*|u|p)|u|p-2u where Iα is a Riesz potential. We construct minimal action odd solutions for p∈(N+α/N,N+α/N-2) and minimal action nodal solutions for p∈(2,N+α/N-2). We introduce a new minimax principle for least action nodal solutions and we develop new concentration-compactness lemmas for sign-changing Palais-Smale sequences. The nonlinear Schrödinger equation, which is the nonlocal counterpart of the Choquard equation, does not have such solutions.
2016
Ghimenti, MARCO GIPO; Van Schaftingen, Jean
File in questo prodotto:
File Dimensione Formato  
nodal choquard.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 456.75 kB
Formato Adobe PDF
456.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ghimenti_797610.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 275.82 kB
Formato Adobe PDF
275.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/797610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 166
  • ???jsp.display-item.citation.isi??? 164
social impact