We consider the general Choquard equations-δu+u=(Iα*|u|p)|u|p-2u where Iα is a Riesz potential. We construct minimal action odd solutions for p∈(N+α/N,N+α/N-2) and minimal action nodal solutions for p∈(2,N+α/N-2). We introduce a new minimax principle for least action nodal solutions and we develop new concentration-compactness lemmas for sign-changing Palais-Smale sequences. The nonlinear Schrödinger equation, which is the nonlocal counterpart of the Choquard equation, does not have such solutions.
Nodal solutions for the Choquard equation
GHIMENTI, MARCO GIPO;
2016-01-01
Abstract
We consider the general Choquard equations-δu+u=(Iα*|u|p)|u|p-2u where Iα is a Riesz potential. We construct minimal action odd solutions for p∈(N+α/N,N+α/N-2) and minimal action nodal solutions for p∈(2,N+α/N-2). We introduce a new minimax principle for least action nodal solutions and we develop new concentration-compactness lemmas for sign-changing Palais-Smale sequences. The nonlinear Schrödinger equation, which is the nonlocal counterpart of the Choquard equation, does not have such solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
nodal choquard.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
456.75 kB
Formato
Adobe PDF
|
456.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ghimenti_797610.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
275.82 kB
Formato
Adobe PDF
|
275.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.